Вах

Вах диода: применение характеристики для поиска сложных неисправностей полупроводниковых элементов

Вах

Широкое применение в области электроники получили полупроводниковые элементы, одним из которых является диод.

Они используются практически во всех устройствах, но чаще — в различных блоках питания и для обеспечения электробезопасности. Каждый из них имеет свое конкретное предназначение и технические характеристики.

Для выявления различного рода неисправностей и получения технических сведений нужно знать ВАХ диода.

Диод (Д) — полупроводниковый элемент, служащий для пропускания тока через p-n-переход только в одном направлении. При помощи Д можно выпрямлять переменное U, получая из него постоянное пульсирующее. Для сглаживания пульсаций применяют фильтры конденсаторного или индуктивного типа, а иногда их и комбинируют.

Д состоит только из p-n-перехода с выводами, которые называются анодом (+) и катодом (-). Ток, при прохождении через проводник, оказывает на него тепловое действие. При нагреве катод испускает отрицательно заряженные частицы — электроны (Э). Анод притягивает электроны, так как обладает положительным зарядом.

В процессе образуется эмиссионное поле, при котором возникает ток (эмиссионный). Между (+) и (-) происходит генерация пространственного отрицательного заряда, мешающего свободному движению Э. Э, достигшие анода, образуют анодный ток, а не достигшие — катодный.

Если анодный и катодный токи равны нулю, Д находится в закрытом состоянии.

Устройство полупроводника

Д состоит из корпуса, изготавливаемого из прочного диэлектрического материала. В корпусе находится вакуумное пространство с 2 электродами (анод и катод).

Электроды, представляющие металл с активным слоем, обладают косвенным накалом. Активный слой при нагревании испускает электроны.

Катод устроен таким образом, что внутри его находится проволока, которая накаливается и испускает электроны, а анод служит для их приема.

В некоторых источниках анод и катод называют кристаллом, который изготавливается из кремния (Si) или германия (Ge). Одна из его составных частей имеет искусственный недостаток электронов, а другая — избыток (рис. 1). Между этими кристаллами существует граница, которая называется p-n-переходом.

Рисунок 1 — Схематическое изображение полупроводника p-n-типа.

Сферы применения

Д широко применяется в качестве выпрямителя переменного U в построении блоков питания (БП), диодных мостов, а также в виде одиночного элемента конкретной схемы. Д способен защитить цепь от несоблюдения полярности подключения источника питания.

В цепи может произойти пробой какой-либо полупроводниковой детали (например, транзистора) и повлечь за собой процесс выхода из строя цепочки радиоэлементов. При этом применяется цепочка из нескольких Д, подключенных в обратном направлении.

На основе полупроводников создаются переключатели для коммутации высокочастотных сигналов.

Д применяются в угольной и металлургической промышленностях, особенно при создании искробезопасных цепей коммутации в виде диодных барьеров, ограничивающих U в необходимой электрической цепи. Диодные барьеры применяются вместе с ограничителями тока (резисторами) для уменьшения значений I и повышения степени защиты, а следовательно, электробезопасности и пожаробезопасности предприятия.

Вольт-амперная характеристика

ВАХ — это характеристика полупроводникового элемента, показывающая зависимость I, проходящего через p-n-переход, от величины и полярности U (рис. 1).

Рисунок 1 – Пример вольт-амперной характеристики полупроводникового диода.

ВАХ отличаются между собой и это зависит от типа полупроводникового прибора. Графиком ВАХ является кривая, по вертикали которой отмечены значения прямого I (вверху). Внизу отмечены значения I при обратном подключении. По горизонтали указаны показания U при прямом и обратном включении. Схема состоит из 2 частей:

  1. Верхняя и правая – Д функционирует в прямом подключении. Показывает пропускной I и линия идет вверх, что свидетельствует о росте прямого U (Uпр).
  2. Нижняя часть слева – Д находится в закрытом состоянии. Линия идет практически параллельно оси и свидетельствует о медленном нарастании Iобр (обратного тока).

Из графика можно сделать вывод: чем круче вертикальная часть графика (1 часть), тем ближе нижняя линия к горизонтальной оси. Это свидетельствует о высоких выпрямительных свойствах полупроводникового прибора. Необходимо учитывать, что ВАХ зависит от температуры окружающей среды, при понижении температуры происходит резкое понижение Iобр. Если температура повышается, то повышается и Iобр.

Построение графика

Построить ВАХ для конкретного типа полупроводникового прибора несложно. Для этого необходимы блок питания, мультиметр (вольтметр и амперметр) и диод (можно построить для любого полупроводникового прибора). Алгоритм построения ВАХ следующий:

  1. Подключить БП к диоду.
  2. Произвести измерения U и I.
  3. Внести данные в таблицу.
  4. На основании табличных данных построить график зависимости I от U (рис. 2).

Рисунок 2 – Пример нелинейной ВАХ диода.

ВАХ будет различна для каждого полупроводника. Например, одним из самых распространенных полупроводников является диод Шоттки, названный немецким физиком В. Шоттки (рисунок 3).

Рисунок 3 – ВАХ Шоттки.

https://www.youtube.com/watch?v=IO4svZ5qS4U

Исходя из графика, носящего асимметричный характер, видно, что для этого типа диода характерно малое падение U при прямом подключении. Присутствует экспоненциальное увеличение I и U.

Ток в барьере обусловлен отрицательно заряженными частицами при обратном и прямом смещениях. Шоттки обладают высоким быстродействием, так как диффузные и рекомбинационные процессы отсутствуют.

I зависит от U благодаря изменению количества носителей, принимающих участие в процессах переноса заряда.

Кремниевый полупроводник широко применяется практически во всех электрических схемах устройств. На рисунке 4 изображена его ВАХ.

Рисунок 4 – ВАХ кремниевого Д.

На рисунке 4 ВАХ начинается с 0,6-0,8 В. Кроме кремниевых Д существуют еще германиевые, которые при нормальной температуре будут нормально работать. Кремниевый имеет меньший Iпр и Iобр, поэтому тепловой необратимый пробой у германиевого Д наступает быстрее (при подаче высокого Uобр), чем у его конкурента.

Выпрямительный Д применяется для преобразования переменного U в постоянное и на рисунке 5 приведена его ВАХ.

Рисунок 5 – ВАХ выпрямительного Д.

На рисунке изображена теоретическая (пунктирная кривая) и практическая (экспериментальная) ВАХ. Они не совпадают из-за того, что в теории не учитывались некоторые аспекты:

  1. Наличие R (сопротивления) эмиттерной области кристалла, выводов и контактов.
  2. Токи утечки.
  3. Процессы генерации и рекомбинации.
  4. Пробои различных типов.

Кроме того, температура окружающей среды значительно влияет на измерения, и ВАХ не совпадают, так как теоретические значения получают при температуре +20 градусов. Существуют и другие важные характеристики полупроводников, которые можно понять по маркировке на корпусе.

Существуют и дополнительные характеристики. Они нужны для применения Д в определенной схеме с U и I. Если использовать маломощный Д в устройствах с U, превышающем максимально допустимое Uобр, то произойдет пробой и выход из строя элемента, а также это может повлечь за собой цепочку выхода других деталей из строя.

Дополнительные характеристики: максимальные значения Iобр и Uобр; прямые значения I и U; ток перегрузки; максимальная температура; рабочая температура и так далее.

ВАХ помогает определить такие сложные неисправности Д: пробой перехода и разгерметизация корпуса. Сложные неисправности могут привести к выходу из строя дорогостоящих деталей, следовательно, перед монтажом Д на плату необходимо его проверить.

Возможные неисправности

Согласно статистике, Д или другие полупроводниковые элементы выходят из строя чаще, чем другие элементы схемы. Неисправный элемент можно вычислить и заменить, но иногда это приводит к потере функциональности.

Например, при пробое p-n-перехода, Д превращается в обыкновенный резистор, а такая трансформация может привести к печальным последствиям, начиная от выхода из строя других элементов и заканчивая пожаром или поражением электрическим током.

К основным неисправностям относятся:

  1. Пробой. Диод утрачивает способность пропускать ток в одном направлении и становится обычным резистором.
  2. Конструктивное повреждение.
  3. Утечка.

При пробое Д не пропускает ток в одном направлении. Причин может быть несколько и возникают они при резких ростах I и U, которые являются недопустимыми значениями для определенного Д. Основные виды пробоев p-n-перехода:

При тепловом на физическом уровне происходит значительный рост колебания атомов, деформация кристаллической решетки, перегрев перехода и попадание электронов в проводимую зону. Процесс необратим и приводит к повреждению радиодетали.

Электрические пробои носят временный характер (кристалл не деформируется) и при возвращении к нормальному режиму работы его функции полупроводника возвращаются. Конструктивным повреждением являются физические повреждения ножек и корпуса. Утечка тока возникает при разгерметизации корпуса.

Для проверки Д достаточно выпаять одну ножку и прозвонить его мультиметром или омметром на наличияе пробоя перехода (должен звониться только в одном направлении). В результате появится значение R p-n-перехода в одном направлении, а в другом прибор покажет бесконечность. Если звониться в 2 направления, то радиодеталь неисправна.

Если отпала ножка, то ее нужно припаять. При повреждении корпуса — деталь необходимо заменить на исправную.

При разгерметизации корпуса понадобится построение графика ВАХ и сравнение его с теоретическим значением, взятым из справочной литературы.

Таким образом, ВАХ позволяет не только получить справочные данные о диоде или любом полупроводниковом элементе, но и выявить сложные неисправности, которые невозможно определить при проверке прибором.

Источник: https://220v.guru/elementy-elektriki/diody/naznachenie-volt-ampernoy-harakteristiki-vah-dioda.html

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода

Вах

Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.

На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.

Прямое включение диода. Прямой ток

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например.

Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными.

Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками.

Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области.

А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа.

Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток

Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет.

Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр).

Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.

Прямое и обратное напряжение диода

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод.

Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод.

В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.

Например.

Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.

Вольт-амперная характеристика полупроводникового диода

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока.

Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов.

Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например.

При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника.

И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки.

Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

https://www.youtube.com/watch?v=9tw60UA1pMY

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике).

Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Электрический пробой

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет.

Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними.

Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

Источник: https://sesaga.ru/princip-raboty-dioda-volt-ampernaya-xarakteristika-proboi-p-n-perexoda.html

Что такое ВАХ диода, типы диодов

Вах

Сегодня диоды можно встретить практически в любом бытовом приборе. Многие даже собирают некоторые устройства в своей домашней лаборатории. Но, чтобы правильно использовать эти элементы электросхемы, нужно знать, что собой представляет ВАХ диода. Именно этой характеристики и будет посвящена данная статья.

Что это такое

ВАХ расшифровывается как вольт-амперная характеристика диодного полупроводника. Она отражает зависимость тока, который проходит через p-n переход диода. ВАХ определяет зависимость тока от величины, а также полярности приложенного напряжения. Вольт-амперная характеристика имеет вид графика (схема). Данный график имеет следующий вид:

ВАХ для диода

Для каждого вида диода график ВАХ будет иметь свой конкретный вид. Как видим, график содержит кривую. По вертикали вверху здесь отмечены значения прямого тока (прямом включении), а внизу – в обратном. Но горизонтали схема и график отображают напряжение, аналогично в прямом и обратном направлении. Таким образом схема вольт-амперной характеристики будет состоять из двух частей:

  • верхняя и правая часть – элемент функционирует в прямом направлении. Она отражает пропускной ток. Линия в этой части идет резко вверх. Она характеризует значительный рост прямого напряжения;
  • нижняя левая часть – элемент действует в обратном направлении. Она соответствует закрытому (обратному) току через переход. Здесь линия идет практически параллельно горизонтальной оси. Она отражает медленное нарастание обратного тока.

Обратите внимание! Чем круче будет вертикальная верхняя часть графика, и ближе к горизонтальной оси нижняя линия, тем более лучше будут выпрямительные свойства полупроводника.

Стоит отметить, что ВАХ сильно зависит от температуры окружающей среды. К примеру, повышение температуры воздуха может привести резкому повышению обратного тока.
Построить своими руками ВАХ можно следующим образом:

  • берем блок питания;
  • подключаем его к любому диоду (минус на катод, а плюс на анод);
  • с помощью мультиметром делаем замеры.

Из полученных данных и строится вольт-амперная характеристика для конкретного элемента. Ее схема или график могут иметь следующий вид.

Нелинейная ВАХ

На графике видна ВАХ, которая в таком исполнении называется нелинейной.
Рассмотрим на примерах различных типов полупроводников. Для каждого отдельного случая данная характеристика буде иметь свой график, хотя они все будут носить единый характер лишь с небольшими изменениями.

Вах для шотки

Одним из наиболее распространенных диодов на сегодняшний день является шоттки. Этот полупроводник был назван в честь физика из Германии Вальтера Шоттки. Для шоттки вольт-амперная характеристика будет иметь следующий вид.

ВАХ для шоттки

Как видим, для шоттки характерно малое падение напряжения в ситуации прямого подключения. Сам график носит явный ассиметричный характер. В зоне прямых смещений наблюдается экспоненциальное увеличение тока и напряжения. При обратном и прямом смещении для данного элемента ток в барьере обусловлен электронами.

В результате этого такие элементы характеризуется быстрым действием, поскольку у нет диффузных и рекомбинационных процессов. При этом несимметричность ВАХ будет типичной для структур барьерного типа.

Здесь зависимость тока от напряжения определена изменением количества носителей, которые берут участие в зарядопереносных процессах.

Кремниевый диод и его ВАХ

Кроме шоттки, большой популярностью на данный момент пользуются кремниевые полупроводники. Для кремниевого типа диода вольт-амперная характеристика выгляди следующим образом.

ВАХ кремниевого и германиевого диода

Для таких полупроводников данная характеристика начинается примерно со значения 0,5-0,7 Вольт. Очень часто кремниевые полупроводники сравнивают с германиевыми. Если температуры окружающей среды равны, то оба устройства будут демонстрировать ширину запрещённой зоны.

При этом кремниевый элемент будут иметь меньший прямой ток, чем из германия. Это же правило касается и обратного тока. Поэтому у германиевых полупроводников обычно сразу наступает тепловой пробой, если имеются обратное большое напряжение.

В итоге, при наличии одинаковой температуры и прямого напряжения, потенциальный барьер у кремниевых полупроводников будет выше, а ток инжекции ниже.

Вах и выпрямительный диод

В завершении хотелось бы рассмотреть данную характеристику для выпрямительного диода. Выпрямительный диод – одна из разновидностей полупроводника, который применятся для преобразования переменного в постоянный ток.

ВАХ для выпрямительного диода

На схеме показана экспериментальная ВАХ и теоретическая (пунктирная линия). Как видим, они не совпадают. Причина этого кроется в том, для теоретических расчетов не учитывались некоторые факторы:

  • наличие омического сопротивления базовой и эмиттерной областей у кристалла;
  • его выводов и контактов;
  • наличие возможности токов утечки по кристальной поверхности;
  • протекание процессов рекомбинации и генерации в переходе для носителей;
  • различные типы пробоев и т. д.

Все эти факторы могут оказывать различное влияние, приводя к отливающейся от теоретической реальной вольт-амперной характеристики. Причем значительное влияние на внешний вид графика в данной ситуации оказывает температура окружающей среды.

ВАХ для выпрямительного диода демонстрирует высокую проводимость устройства в момент приложения к нему напряжения в прямом направлении. В обратном же направлении наблюдается низкая проводимость. В такой ситуации ток через элемент практически не течет в обратном направлении.

Но это происходит только при определенных параметрах обратного напряжения. Если его превысить, то на графике видно лавинообразное повышение тока в обратном направлении.

Заключение

Вольт-амперная характеристика для диодных элементов считается важным параметром, отражающем специфику проведения тока в обратном и прямом направлениях. Она определяется в зависимости от напряжения и температуры окружающей среды.

Источник: https://1posvetu.ru/montazh-i-nastrojka/vah-dioda.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть